Chat with us, powered by LiveChat Select a peer-reviewed journal that has a research study related to quality monitoring needle stick, falls, etc in health care delivery. In the discussion post provide: | WriteDen

Select a peer-reviewed journal that has a research study related to quality monitoring needle stick, falls, etc in health care delivery. In the discussion post provide:

Select a peer-reviewed journal that has a research study [not provided in the course readings] related to quality monitoring (needle stick, falls, etc…) in health care delivery. In the discussion post provide:

  • a brief overview of the article 
  • the process indicator or outcome indicator that is used to measure quality
  • whether the indicator effectively measures the problem – why or why not
  • report economic, legal, and regulatory processes that affect the quality initiative
  • a way to monitor and measure one aspect of your current practice (turning patients, time spent collaborating with other health care workers, medication delivery, etc…)

A ccidental needlestick injuries (NSIs) are the predominant sharps-related problem in industrialised countries (Prüss‐Üstün et al, 2005). NHS Employers estimates that there are approximately 40 000 NSIs a year and recognises

that the true figure may be twice this, as many go unreported (NHS Employers, 2015). Measures to prevent sharps injuries can best be implemented using initiatives identified in the European Directive (European Council, 2010). The directive announced the modification of work practices that pose a risk of sharps injury in order to make them safer and introduced a complete end to the recapping of needles. It promoted a range of initiatives to prevent NSIs, such as training, use of needle-safety devices (NSDs), using sharps containers and improved treatment and care after an NSI has occurred. The author will focus on training and safety devices as these have been recognised as making the most impact in reducing NSIs (Beswick et al, 2012; Cheetham et al, 2016).

Do training and needle-safety devices prevent needlestick injuries? A systematised review of the literature Ann-Marie Aziz

ABSTRACT This systematised review was undertaken to appraise research on the effects of training and the use of needle-safety devices (NSDs) on the prevention of needlestick injuries (NSIs) among health workers, focusing on a European perspective. A literature search from 2007 to 2017 was performed, which identified six studies that investigated the introduction of training and NSDs and their affect on NSIs. The six chosen studies identified that training, as well as the adoption of NSDs, has an impact on preventing NSIs. However, further information is required on the content and mode of delivery of training and on which types of NSDs are most effective at preventing injuries. This will help healthcare workers to understand and implement the most effective strategies to prevent injuries. This article provides a critique of the research approaches used in the six studies.

Key words: Needlestick injuries ■ Needle safety devices ■ Needlestick injury prevention

Ann-Marie Aziz, Clinical Lead: Infection Control and Prevention, Pennine Care NHS Foundation Trust, Manchester,

Accepted for publication: July 2018

Method This systematised review focused on research from a European perspective, gathering information on studies that have been undertaken in European countries, highlighting measures that have helped to reduce NSIs prior to and after the introduction of European legislation (European Council, 2010). A search of the literature from 2007 to 2017 was performed, stipulating those studies that were available in English.

To achieve evidence-based healthcare, it is recommended that clinicians formulate clinical questions in terms of the problem/ population, intervention, comparison, and outcome (PICO) (Huang et al, 2006). The PICO framework is also a strategy for framing a research question (Beitz, 2006).

This study’s research question (does training and the use of NSDs prevent NSIs?) was broken down into the four PICO components to facilitate the identification of relevant information (Box 1). A clinical question needs to be directly relevant to the patient or problem at hand and phrased in such a way as to facilitate the search for an answer. PICO makes this process easier as it helps to formulate the search strategy by identifying the key concepts that need to be investigated.

The agreed search terms were sufficiently selective to exclude papers outside of the topic areas (Figure 1). Database searches were undertaken in AMED, British Nursing Index, CINAHL, HBE (Health Business Elite), HMIC, Embase, Medline, PsycINFO, PubMed, Science Direct, Google Scholar and the Cochrane Library. The use of comprehensive search engines is consistent with recommendations given in a discussion paper about systematised reviews for occupational health research (Nicholson, 2007). The full process of the literature search is shown in Figure 1. To identify which articles to include in the review and to confirm that these are the only relevant articles that could be obtained after the literature search, inclusion and exclusion criteria were created.

Inclusion criteria were: ■ Search terms included in the title or abstract ■ Studies from 2007 to 2017 ■ English language studies ■ European studies ■ Studies involving healthcare workers, hospitals ■ Studies that showed education, training and NSDs prevented


944 British Journal of Nursing, 2018, Vol 27, No 16

© 2

01 8


H ea

lt h ca

re L


■ Studies that showed a numerical reduction in NSIs ■ Studies that showed a statistical significant reduction in NSIs.

Exclusion criteria were: ■ Studies that showed only a reduction in NSIs without

including training of staff ■ Studies that did not show a reduction in NSIs (some studies

did not provide information on NSI reduction, but simply discussed the introduction of NSDs and/or training)

■ Studies that evaluated NSDs only (and did not include training)

■ Studies that evaluated training only (and did not include NSDs)

■ Non-European studies ■ Studies where the full text could not be obtained (two

studies were in Spanish and could not be translated in the time limit of the study)

■ Studies on blunt needles, double gloving, splashes and body fluid exposure risk

■ Studies involving reporting and evaluating NSIs ■ Studies evaluating costs of NSIs ■ Studies looking at risk factors for NSIs.

Nineteen articles were assessed against the inclusion criteria. Six were chosen for the study as they met the aim of this systematised review, to assess if training given to healthcare workers as well as the adoption of NSDs, has an impact on preventing NSIs. The six studies comprised five cohort studies and one randomised controlled trial (RCT) (van der Molen et al, 2011) (Table 1). Of the 19 studies, the following were excluded from the study: Falagas et al (2007), Lamontagne et al (2007), Little et al (2007), Prunet et al (2008), Wicker et al (2008a), Wicker et al (2008b), Brusaferro et al (2009), Costigliola et al (2012), Dante et al (2014), Frickman et al (2016), Ganczak et al (2016), Dulon et al (2017), and Bossi et al (2016).

Quality and bias assessment Empirical studies show that certain aspects of trials conducted are associated with bias (Higgins et al, 2011). It was important to assess the studies chosen for this review for bias. Those studies with a low or high risk of bias may result in inappropriate recommendations for practice or policy (Norris et al, 2011). To prevent this, a critical appraisal is recommended to identify which findings are most reliable (Higgins et al, 2011). To ensure this review acknowledged the risk of bias, the author used two quality screening tools. The Effective Public Health Practice Project (EPHPP) tool was used to assess the non-randomised studies for quality and bias, scrutinising six domains: selection bias, study design, confounders, blinding, data-collection methods and withdrawals/dropouts (Deeks et al, 2003). The Cochrane Collaboration’s tool for assessing risk of bias was utilised for the RCT (Higgins et al, 2011).

The EPHPP tool is used to assess study quality based on component ratings. According to this tool, a study assessed as ‘strong’ achieves four strong ratings and no weak ratings. A study assessed as ‘moderate’ has fewer than four strong ratings and one weak rating; and a weak study achieves two or more weak ratings. The EPHPP tool was chosen because

it had been recommended as suitable for non-randomised intervention studies (Deeks et al, 2003). The tool allows for the evaluation of study designs and provides clear guidance for assessment so that it could be applied and interpreted in a logical format. The tool’s validity and reliability has been tested in various studies (Thomas et al, 2004).

Box 1. Population, intervention, comparison, outcome (PICO) framework

P Population (healthcare workers, hospital, healthcare sector)

I Intervention (introduction of needle-safety devices and training, education, teaching, workshops)

C Comparison (no training and traditional sharps equipment)

O Outcome (rates of needlestick injuries)

In c lu

si o n c

ri te

ri a

S c re

e n in

g Id

e n ti

fi c a ti

o n

In c lu

d e d

Search terms examples:

■ Preventing needlestick injuries ■ Training and education reduces needlestick injuries

■ Needle-safety devices prevent needlestick injuries

Records limit to:

■ Inclusion criteria words in title or abstract

■ Limit dates to 2007 to 2017

■ English language articles only included

HDAS records screened for eligibility (n=27)

Other sources of information: (n=23)

European studies assessed for inclusion criteria: (n=19)

European studies included in systematised review (n=6)

Records identified through Healthcare Database Advanced

Search (HDAS) searching (n=5757)

Records identified through:

■ BMJ Journal Collections (n=1)

■ Ganczak et al (2016) ■ Citation searching (n=3) ■ Existing systematic/ literature reviews on subject (n=13)

■ Prüss-Üstün et al (2005) ■ Health and Safety Executive (2016)

■ Beswick et al (2012) ■ Royal College of Nursing (2009; 2013)

■ NHS Employers (2015) ■ Loveday et al (2014)

Figure 1. Flowchart showing database search strategy and combination of results for identification of studies for inclusion in review

British Journal of Nursing, 2018, Vol 27, No 16 945


2 01

8 M


ea lt h ca

re L


Data synthesis from the chosen studies The review identified that the chosen studies identified moderate quality evidence that training and NSDs do prevent NSI.

Nationality, language, publication information The chosen articles were reports of research in Spain, Italy, France, the Netherlands and Germany. There were very few published articles undertaken on the subject in the UK that combined both training and the use of NSDs as interventions to reduce the number of NSIs. This review included only evidence from published articles, which could be misleading if conclusions are ultimately based on these criteria. The literature shows that an article has a better chance of being published if it is published soon after the study has taken place, shows positive results and is financially supported by sponsors (Dubben and Beck-Bornholdt, 2005). This is referred to as publication bias and one way to counteract this is to access data from unpublished work. Song et al (2013) stated that unpublished work should be included in all systematised reviews and state this bias can be reduced by searching trial registers for completed and ongoing studies; searching informal publication sources including meeting abstracts (included within Cochrane trial registers) and PhD theses; searching regulatory bodies (such as the US Food and Drug Administration (FDA) database); contacting the authors of included studies; and contacting pharmaceutical or medical device companies for further studies.

There were several articles published on the subject by Spanish authors (Valls et al, 2007; Tejerina et al, 2008; Catalán et al, 2010; Funes-Artiaga et al, 2012). However, as the research was limited to English language articles, only one study was included (Valls et al, 2007) because this showed that training and NSDs led to a reduction in NSIs. The author is aware that exclusive reliance on English language studies may mean that not all of the evidence is represented in this review and may have introduced a language bias and lead to erroneous conclusions. This was unavoidable as the added time and cost of translation of articles was deemed not feasible within the restrictive timeframe.

Study designs There were various study designs included in the review; five could be broadly described as cohort studies, and the sixth was an RCT. No reason was given by the authors of the five cohort studies for choosing their study design or why they did not adopt a more rigorous approach such as an RCT. This may have been due to the disadvantages associated with RCTs in terms of the large numbers of participants required, cost, time and the need to obtain ethical approval, which can be a lengthy procedure. However, RCTs, often described as the ‘gold standard’ of scientific research, allow the investigation of the effect of an intervention while eliminating common research bias. The quality of chosen studies may have improved if they had undertaken an RCT. This may have reduced bias associated with confounders (for example, authors did not indicate how training before and after NSDs were introduced differed or was similar).

Participants in the studies were not blind to the intervention under investigation, which may have introduced bias. Descriptions of data-collection methods and self-reporting of NSIs were ambiguous. For these reasons the studies were deemed weak or moderate in the quality assessment. Only one study included withdrawal figures and dropout rates (Sossai et al, 2016). It is necessary for research to indicate the dropout rate, as this is a serious potential for bias. This may constitute a fatal flaw in a study, as dropouts result in incomplete data that can lead to inaccurate and spurious findings and erroneous results if dropout rates are high.

This review was unable to find a sound scientific methodology in any of the six chosen studies. An ideal environment for undertaking research is one that is controlled, allowing a hypothesis to be tested under set conditions. However, this is frequently impossible in certain areas, particularly busy hospital wards. The practice of experimental control and reproducibility can have the effect of diminishing the potentially harmful effects of personal bias (when researchers tend to observe what they expect to observe). Using the RCT format should reduce the likelihood of such biases occurring and enable clinicians to have confidence to base practice on the findings.

Table 1. The six studies included in the review

Authors Title Study setting Training given? Needle-safety device used?

Reduction in needle-stick injuries?

Valls et al (2007)

Use of safety devices and the prevention of percutaneous injuries among healthcare workers

Spain Yes Yes Yes

Sossai et al (2010)

Using an intravenous catheter system to prevent needlestick injury Italy Yes Yes Yes

Tosini et al (2010)

Needlestick injury rates according to different types of safety- engineered devices: results of a French multi-centre study

France Yes Yes Yes

van der Molen et al (2011)

Better effect of the use of a needle safety device in combination with an interactive workshop to prevent needlestick injuries

Netherlands Yes Yes Yes

Hoffmann et al (2013)

Reduction of needlestick injuries in healthcare personnel at a university hospital using safety devices

Germany Yes Yes Yes

Sosai et al (2016)

Efficacy of safety catheter devices in the prevention of occupational needle stick injuries: applied research in the Liguria Region (Italy)

Italy Yes Yes Yes

946 British Journal of Nursing, 2018, Vol 27, No 16

© 2

01 8


H ea

lt h ca

re L


In one study in which new NSD devices were introduced, healthcare workers still had access to the conventional devices during the intervention period (van der Molen et al, 2011). NSIs caused by the conventional devices may have been mis- categorised as occurring when using the new NSDs, reducing the effect of the intervention and the quality of the research.

Participants All the studies chose participants who were employed in a hospital and had clinical experience using sharps equipment. There was no selection bias introduced by the selection of the individuals in the studies, as the healthcare workers were representative of the population under review.

Of the six studies analysed, the number of participants was included in only four:

■ Valls et al, 2007 (n=75) ■ Sossai et al, 2010 (n=4636) ■ van der Molen et al, 2001 (n=491) ■ Hoffmann et al, 2013 (n=6683).

Two studies did not disclose the number of participants but gave the number of NSDs used and the numbers of NSIs in the time period of the study (Tosini et al, 2010; Sossai et al, 2016). This total of 11 885 participants would not be considered representative of the vast numbers of health workers who use NSDs and so no real significance or positive correlation could be inferred. When undertaking scientific research, the study population is an important feature and an essential item to be included to reduce the probability of error, respect ethical standards, and define the logistics of the study (Martínez-Mesa et al, 2014). It allows conclusions to be drawn about the target population, as long as it is representative of the latter.

Needlestick injury reporting Under-reporting of NSIs was acknowledged in all the studies. This was recognised as a possible confounder and an issue that needed to improve in future studies if the extent of NSI occurrence is to be identified. All studies undertook purposive sampling, which is where the researchers have purposely selected the members of population to study. This is subjective sampling, usually used to save time and money. It can, however, have low levels of reliability and high levels of bias, making it difficult to generalise to the wider population. Undertaking research outside the hospital setting (which none of the studies included) may have had a different outcome. Healthcare settings such as nursing homes, GP clinics, private hospitals, ambulance trusts and community services all use sharps equipment but were not included in any of the research studies. Researchers may have wanted a more homogenous sample for ease of research, but diversifying the methodology and including other groups outside the hospital setting may have provided richer data and lead to stronger conclusions.

The study of NSI incidence when using NSDs could benefit from a long-term analysis. This was lacking in the studies selected. By including a long-term analysis of interventions, outcomes may have proved different from short-term effects, which can be misleading (Pelton and van Manen, 1996). Using the NSDs for longer could have potentially showed injuries return to the levels before the NSDs were introduced because healthcare workers may

revert to their usual practices once a short-term study has finished. Some studies have shown that NSIs still occur despite NSDs

being used (Sohn et al, 2004; Tarigan et al, 2015; Dulon et al, 2017). Long-term studies are required for this subject to give more of a balanced account of their lasting effectiveness and trends on injury rates. However, this type of research can have problems with dropout rates, maintaining funding, and waning enthusiasm among participants and researchers, all of which ultimately impacts on the validity of results.

Denominators The chosen studies had different denominators used to analyse the effects of the interventions to reduce NSIs. The denominators for the self-reported NSIs were patient-days and patients (Valls et al, 2007), medical devices purchased (Sossai et al, 2010; Tosini et al, 2010; Hoffmann et al, 2013; Sossai et al, 2016) and numbers of healthcare workers (van der Molen et al, 2011).

Tarigan et al (2015) stated that many studies measuring the effect of introducing NSDs on NSIs have given the denominator as a combination of the number of devices used, devices purchased, full-time equivalent staff, working hours, occupied beds, patient days and healthcare workers. It has been argued that the best denominator would be patient days, because of the availability of accurate figures (Chen and Gluud, 2005). The author argues that a standard denominator needs to be recognised across all NHS trusts so comparisons can be made on which are performing well in the reduction of NSIs and which are failing. Currently there is no objective measure across NHS trusts.

Ethical approval The authors of the six chosen studies did not indicate whether ethical approval had been sought or gained for the research including the authors of the RCT. The investigators may not have sought ethical approval as they considered introduction of the NSDs and training in their use would reduce the risk of harm to participants. Ethics screening tools are available to determine if ethical approval is required (Endacott, 2004), but their use was not discussed in the studies. The studies might have benefited from alluding to the potential risks (of using new devices) and the inclusion of ethical terminology such as ‘maintaining privacy’, ‘confidentiality of data’ and obtaining ‘informed consent’ from participants. These terms, indicating good research accountability, were missing from the studies and should have been documented to ensure the research was conducted in a safe and principled way (Smajdor et al, 2009).

There is an emphasis on quality improvement programmes in the NHS (Wenborn and Mountain, 2016). Making a distinction between what constitutes audit, quality improvement and research is important in the context of enhanced clinical and research governance requirements. When conducting research clinicians should not rely on professional judgement as an alternative to formal ethics committee procedures. The ethical approval process analyses the risks involved in the research and how to manage those risks, helping to protect participants from harm (Endacott, 2004; Smajdor et al, 2009). Ethical approval also helps in cases of litigation if, for example, any of the participants in a study acquired an NSI using the NSDs.

British Journal of Nursing, 2018, Vol 27, No 16 947


2 01

8 M


ea lt h ca

re L


Alternative research techniques The addition of qualitative research techniques or using a mixed methodology could have improved the studies. Incorporating observations or interviews may have added another dimension to research into preventing NSIs. Interviewing participants may have elicited information on NSIs that were not reported. Healthcare workers may not have reported NSIs due to the time it takes to complete the reporting process. Interviews may have gathered information on why staff did not report a NSI and which NSI- preventing measures work in practice. Counting the number of NSIs reported may have been a misrepresentation (even a falsification if all NSIs were not reported) of the problem, and including a richer, deeper understanding of the work environment and practices through interviews may have elicited further precursors to injuries. During data analysis, qualitative data can assist with interpreting, clarifying, describing, and validating quantitative results (Doorenbos, 2014).

Bias The chosen studies were liable to researcher bias, where the researchers performing the research influence the results, in order to portray a certain outcome (Pannucci and Wilkins, 2010). Another factor was that the researchers in the six chosen studies were not nurses but doctors or academics based in universities, so findings may not be applicable to NHS nurses. Nurses need to be more involved in research, especially when the outcome could affect their clinical practice. Barriers to nursing research have been found to be a lack of time, funding or practical support, and difficulties navigating regulations (Tanner and Hale, 2002). More nursing research will enhance the status of nursing and help to improve nursing care.

Funding All the studies disclosed that funding was obtained to support the research. There can be a negative perception of funded research, as it can be seen as potentially skewing the results in favour of a new drug or device. This potential bias should be highlighted in the research and identification of the supporting company should always be given (Pannucci and Wilkins, 2010).

Thematic analysis of findings and discussion This systematised review was unable to find a sound scientific methodology in any of the chosen studies. The studies showed evidence of bias in the areas of selection, study design, blinding and lack of dropout rates. Attention to these areas in future studies would improve research quality and enable generalisations to be made to the wider population. The recurring themes from the research were that training and safety devices can prevent NSIs; however, information on what form the delivery of the training should take and what type of device is most effective was absent.

Training Descriptions of the training provided varied in all studies. Some studies did not mention the content of the training (Tosini et al, 2010; Hoffmann et al, 2013). Training in two of the studies included several hours of taught sessions, including hands-on training with the devices, with some of the training being

provided by the manufacturers of the NSDs (Valls et al, 2007; Hoffmann et al, 2013). Training given to the participants in three studies (Valls et al, 2007; Sossai et al, 2010; van der Molen et al, 2011) was varied and incorporated taught sessions depicting issues around preventing, managing and reporting injuries. Some studies included the dangers of blood-borne infectious diseases such as hepatitis B, hepatitis C and HIV in their training (Valls et al, 2007; Sossai et al, 2010; Hoffmann et al, 2013; Sossai et al, 2016). The training highlighted practices to minimise the risk of exposure to these infections and the wearing of personal protective equipment. Written instructions regarding the handling of sharp needles and other instruments were provided to participants with risks relating to exposure to blood. Training depicted standard precautions and mandatory protocols to adopt in case of injury or exposure and to whom and how to report any injury.

Training as an intervention to prevent NSIs was of particular interest to the author as it was hoped that information gathered here would inform and instruct future training sessions to prevent NSIs in the author’s workplace. As an infection prevention and control (IPC) nurse who teaches NSI prevention, the mode of delivering this training was of particular interest. However, information on this topic was lacking in the six selected studies. Content, delivery techniques, measures of assessing training needs, modes of delivery (such as e-learning, face-to-face learning in the classroom, webinars, workbooks and lectures) and competency assessing were overlooked in the research. This was disappointing as the author was hoping use such information to improve practice in her trust.

Training in the NHS Training can enhance the skills, capabilities and knowledge of staff in the workplace (Royal College of Nursing (RCN), 2013). The training process in the NHS is continuous, as new skills, knowledge and techniques are frequently introduced. Appropriately trained workers waste less time, money and resources and have fewer accidents (Health and Safety Executive (HSE), 2016). So it is imperative that organisations get the training right. There are many challenges in delivering training in the NHS, such as the overwhelming number of subjects that need to be covered. Training can soon become out of date as new directives are published and new equipment is purchased. It also often takes nurses away from patient care. Tailoring training to an organisation’s or individual’s needs will help overcome many challenges. All training must have clearly stated learning outcomes.

The way in which training is delivered also needs more attention; an external trainer can be beneficial as they may be an expert in the field and deliver the training in a professional and interesting way. However, they may be expensive and lack awareness of the culture of the organisation.

Delivering training in the NHS can be challenging as it has to be delivered to members of different hierarchies, cultures and generations (Sarre et al, 2018). Trainers must consider different learning styles, languages and how members of different generations prefer to be trained. Ensuring that all staff are fully engaged in learning is another of the problems faced in training and development. An effective approach to ensuring engagement is to make the trainees stakeholders in their own

948 British Journal of Nursing, 2018, Vol 27, No 16

© 2

01 8


H ea

lt h ca

re L


learning. Undertaking personal staff appraisals, using surveys and appealing to their organisational and individual goals can make employees feel that they have been fully involved in training development (The King’s Fund, 2015).

A training method most commonly used in the NHS is e-learning. This is probably because it is inexpensive, quick and does not entail staff leaving the workplace. However, this model of training can be problematic in trying to capture all staff due to the lack of computers and staff unable to find time to complete it during their busy duties. Using e-learning also does not guarantee that staff will increase their knowledge on preventing NSIs as there is sometimes no discussion, tests or competency assessment afterwards. E-learning for teaching prevention of NSIs can be challenging for IPC staff, as it is fraught with issues—staff may have minimal computer literacy skills, there may be technical problems, and issues with time management and self-motivation (RCN, 2013). These may all negatively impact staff learning about NSI prevention.

The author believes that the delivery of training needs to improve if the NHS is to make a noticeable reduction in NSIs. Training can be delivered via many multi-modal routes (Zafar et al, 2009) and its success tested using pre- and post-training questionnaires (Rajkumari et al, 2015). NSI prevention training in the NHS needs to be more creative to engage staff and make learning more worthwhile, interesting and meaningful. Practical training in relation to NSD use may be more successful in helping to prevent NSIs than e-learning. Further research is required on the effectiveness of training and the reduction of NSIs.

Needle-safety devices The studies in this systematised review (n=6) described the NSDs used and the practices for which they were being used. Practices undertaken using the NSDs were phlebotomy, intramuscular injections, subcutaneous injections, intravenous access and blood gas analysis. All the studies except two (Valls et al, 2007; van der Molen et al, 2011) included and explained the characteristics of the NSDs and categorised the NSDs as either &#x2


Our website has a team of professional writers who can help you write any of your homework. They will write your papers from scratch. We also have a team of editors just to make sure all papers are of 

Step 1

To make an Order you only need to click ORDER NOW and we will direct you to our Order Page at WriteDen. Then fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.
 Deadline range from 6 hours to 30 days.

Step 2

Once done with writing your paper we will upload it to your account on our website and also forward a copy to your email.

Step 3
Upon receiving your paper, review it and if any changes are needed contact us immediately. We offer unlimited revisions at no extra cost.

Is it Safe to use our services?
We never resell papers on this site. Meaning after your purchase you will get an original copy of your assignment and you have all the rights to use the paper.


Our price ranges from $8-$14 per page. If you are short of Budget, contact our Live Support for a Discount Code. All new clients are eligible for 20% off in their first Order. Our payment method is safe and secure.

Please note we do not have prewritten answers. We need some time to prepare a perfect essay for you.